Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin Huang, Fuqun Zhao, Ru-Ji Wang, Fushi Zhang* and Chen-Ho Tung

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
zhangf@@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.052$
$w R$ factor $=0.113$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(4-tert-Butylphenoxy)phthalonitrile

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$, contains a phthalonitrile ring lying on a crystallographic mirror plane and a 4-tert-butylphenoxy substituent oriented exactly perpendicular to that plane.

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and sub-phthalocyanines (McKeown, 1998; Leznoff \& Lever, 1989-1996). Phthalocyanines were first developed as dyes and pigments (Moser \& Thomas, 1983). Over the last few years, a great deal of interest has focused on the synthesis of phthalocyanine derivatives due to their applications in many fields, such as chemical sensors, electrochromic devices, batteries, semiconductive materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff \& Lever, 1989-1996).

(I)

We report here the structure of the title compound, (I), in which the phthalonitrile ring lies on a crystallographic mirror plane with atoms C10 and C11 of the phenoxy ring and atom C14 of the disordered tert-butyl substituent in general positions (Fig. 1. As a result, the 4-tert-butylphenoxy ring plane is oriented exactly perpendicular to that of the phthalocyanine ring. The $\mathrm{C} 1 \equiv \mathrm{~N} 1$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2$ bond distances are 1.137 (6) and 1.139 (6) \AA, respectively, consistent with $\mathrm{N} \equiv \mathrm{C}$ triplebond character, and in good agreement with literature values (Nesi et al., 1998; Dinçer et al., 2004; Ocak et al., 2004).

Received 14 October 2005
Accepted 1 November 2005 Online 30 November 2005

Figure 1
The structure of the title compound, (I), showing 35% probability ellipsoids and the atomic numbering scheme. The C and H atoms of the methyl groups of the minor disorder component (C14' and C15') have been omitted for clarity. Unlabeled atoms are related to labeled atoms by $x,-y+\frac{3}{2}, z$

Figure 2
The molecular packing of (I), viewed along the b axis. H atoms have been omitted.

Experimental

4-tert-Butylphenol ($3 \mathrm{~g}, 20 \mathrm{mmol}$) and 3-nitrophthalonitrile (1.73 g , 10 mmol) were dissolved in dry dimethylformamide (50 ml). After
stirring for 1 h at room temperature, dry finely powdered potassium carbonate ($2.76 \mathrm{~g}, 20 \mathrm{mmol}$) was added portionwise over a period of 2 h with stirring. The reaction mixture was stirred for 36 h at room temperature and poured into ice-water (200 g). The product was filtered off and washed with water until the filtrate was neutral. Recrystallization from toluene gave a white product (yield 1.97 g , 71.4%). Single crystals were obtained from toluene at room temperature by slow evaporation (m.p. 393-394 K). IR (KBr, v cm^{-1}): 2964, 2868, 2239, 2229; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.54-7.41(m, 4 \mathrm{H})$, 7.10-7.00 ($m, 3 \mathrm{H}$), $1.34(s, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 161.4,151.4$, 149.4, 134.4, 129.1, 127.4, 126.8, 125.4, 120.4, 120.0, 117.3, 115.3, 112.9, 105.9, 34.7, 31.5 .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=276.33$
Monoclinic, $P 2_{1} / m$
$a=8.7541$ (10) \AA
$b=6.8132$ (5) A
$c=13.5203$ (19) \AA
$\beta=100.280$ (13) ${ }^{\circ}$
$V=793.45(16) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.157 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 38 \\
& \text { reflections } \\
& \theta=5.1-12.4^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.4 \times 0.3 \times 0.1 \mathrm{~mm} \\
& \\
& \\
& \theta_{\max }=25.5^{\circ} \\
& h=-1 \rightarrow 10 \\
& k=-1 \rightarrow 8 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Data collection

Bruker P4 diffractometer ω scans
Absorption correction: none
2265 measured reflections
1621 independent reflections
757 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.113$
$S=1.01$
1621 reflections
136 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.001 P)^{2}\right. \\
& +0.3 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006{ }_{0} \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.10 \mathrm{e}^{-3}
\end{aligned}
$$

The methyl groups of the tert-butyl substituent on the phenoxy ring are disordered with respect to rotation about the $\mathrm{C} 12-\mathrm{C} 13$ bond. The two main orientations of the methyl groups were assigned as C14/C15 and C14'/C15', and their occupancies refined to 0.670 (3) and 0.330 (3), respectively. H atoms, including those on the disordered methyl C atoms, were positioned geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distances at $0.93 \AA$ and methyl C -H distances at $0.96 \AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\right.$ aromatic C$)$ or $U_{\text {eq }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl C$\left.)\right]$.

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful for the support of the Fund for Fundamental Research of Tsinghua University, and the Projects of Development Plan of the State Key Fundamental Research (grant No. G2003AA311131).

References

Bruker (1997). XSCANS (Version 2.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

Dinçer, M., Ağar, A., Akdemir, N., Ağar, E. \& Özdemir, N. (2004). Acta Cryst. E60, o79-o80.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.

Moser, F. H. \& Thomas A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.
Nesi, R., Turchi, S., Giomi, D. \& Corsi, C. (1998). Tetrahedron, 54, 1085110856.

Ocak, N., Işik, Ş., Akdemir, N., Kantar, C. \& Ağar, E. (2004). Acta Cryst. E60, o361-o362.

